1) If the frequency of light is known to be 9.45×10^{14} hz, what is the wavelength in meters?

A) 3.17 x 10 ⁻⁷ m	A. Correct, rearrange the formula =C= λf to solve for wavelength , λ =C/f
B) 3.15 x 10 ⁶ m	B. Incorrect, this is $\lambda=f/c$ which is incorrect rearrangement of the formula
C) 2.85 x 10 ²³ m	C. Incorrect, this is $\lambda\text{=}cf$ which is incorrect rearrangement of the formula
D) 6.26 x 10 ⁻¹⁹	D. Incorrect, this is λ =hf which is an incorrect formula

Multiple Choice Item

2) What is the energy of a photon of light whose frequency is 7.85×10^{15} Hz?

A) 2.53 x 10 ⁻⁴¹ J	A. Incorrect, this is an incorrect use of the formula ${\sf E}_{\sf photon}{=}~hc/\lambda$
B)3.82 x 10 ⁻⁸ J	B. Incorrect, this is an incorrect use of the formula $\lambda=$ C/f, the problem is asking for energy not wavelength
C) 5.20 x 10 ⁻¹⁸ J	C. Correct, use the formula $E_{photon} = hf$ to solve for energy
D) 2.36 x 10 ²⁴ J	D. Incorrect, this is an incorrect use of the formula $c=\lambda f$

Multiple Choice Item

3) If light has a wavelength of 5.50×10^{-7} m, what is the energy of one photon of this light?

A) 5.45 x 10 ¹⁴ J	A. Incorrect, this is an incorrect use of the formula C= λf which solves for frequency, not energy
B) 3.61 x 10 ⁻¹⁹ J	B. Correct, using the formula E_{photon} = hc/ λ , plug the numbers in and calculate
C) 1.09 x 10 ⁻³¹ J	C. Incorrect, this is an incorrect use of the formula E_{photon} = hc/ λ
D) 3.64 x 10 ⁻⁴⁰ J	D. Incorrect, this is an incorrect use of the formula $E_{photon} = hf$, you are given wavelength not frequency.