CM4L9 Assessment

- 1) The specific heat of aluminum is 0.900 J/g °C. How much heat is required to raise the temperature of a 30.0g block of aluminum from 25.0°C to 75.0°C?
 - a. 0.540 J (Incorrect)
 - b. 1.50 J (Incorrect)
 - c. 1350 J (Correct)
 - d. 1670 J (Incorrect)

Show work regardless if student got answer correct or incorrect $q = mC\Delta T$ $q = (30.0g)(0.900J/g^{\circ}C)(50^{\circ}C)$ q = 1350 J

- 2) Given the balanced equation representing a reaction at 101.3 kPa and 298K: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) + 91.8kJ$
 - a. It is exothermic and ΔH equals -91.8 kJ (Correct; exothermic reactions have energy as a product and a negative ΔH)
 - b. It is exothermic and ΔH equals +91.8 kJ (Incorrect; exothermic reactions have a negative ΔH)
 - c. It is endothermic and Δ H equals -91.8 kJ (Incorrect; endothermic reactions have a positive Δ H and have energy as a reactant)
 - d. It is endothermic and ΔH equals +91.8 kJ (Incorrect; endothermic reactions have energy as a reactant)
- 3) The table below shows the specific heat capacity of four substances.

Substance	Specific Heat J / g °C	
Water	4.18	
Copper	0.39	
Gold	0.13	
Silver	0.24	

For an equal mass of each substance, which one will require the *least* amount of heat to raise its temperature from 40° C to 50° C?

- a. water (Incorrect; water would require the *most* amount of heat (energy) to raise it's temperature)
- b. copper (Incorrect; it would take 0.39 J for each degree change in copper. There is a substance that requires less heat (energy) than copper)
- c. gold (Correct; the smaller the specific heat the less heat (energy) that is needed to raise the temperature)
- d. silver (Incorrect; it would take 0.24 J for each degree change in silver. There is a substance that requires less heat (energy) than silver)

<u>∆H_f° kJ/mol</u>			
CuO	-156.1		
Cu ₂ O	-170.7		

4) What is the value of ΔH° (in kJ) for this reaction?

- $2CuO(s) \rightarrow Cu_2O(s) + \frac{1}{2}O_2(g)$
- a. 141.5 Correct
- b. 14.6 Incorrect
- c. -14.6 Incorrect
- d. -141.5 Incorrect

Show correct work regardless of answer choice.
$\Delta Hrxn = [H_{Cu2O} + \frac{1}{2}(H_{O2})] - 2(H_{CuO})$
$= [-170.7 + \frac{1}{2}(0)] - 2(-156.1)$
= 141.5 kJ

5) Consider the following reaction:

$$2AI(s) + 3CI_2(g) \rightarrow 2AICI_3(s)$$

When a 20.0g sample of chlorine reacts with excess aluminum, how much energy will be released as heat?

a. 1739 kJ Incorrect

- b. 869 kJ Incorrect
- c. 580 kJ Incorrect
- d. 290 kJ Correct

5	Show correct work regardless of answer choice.						
	20g Cl ₂	1 mole Cl ₂	1391 kJ				
		32 g Cl ₂	3 moles Cl ₂	289.8 g			