Example: During one cold football game, the math club made $\$ 685$ selling large cups of hot chocolate and coffee. They used 420 cups and sold the hot chocolate for $\$ 1.75$ per cup and the coffee for $\$ 1.25$ per cup. Write a system of equations that could be used to determine how many cups of each type of drink they sold.

Solution:

Let $\mathrm{h}=$ the number of cups of hot chocolate they sold
Let $\mathrm{c}=$ the number of cups of coffee they sold
If they used 420 total cups, then $\mathrm{h}+\mathrm{c}=420$ represents the number of cups used that game. If they made $\$ 685$ dollars and sold each cup of hot chocolate for $\$ 1.75$ and each cup of coffee for $\$ 1.25$, then the equation that represents all of the money is $1.75 \mathrm{~h}+1.25 \mathrm{c}=685$.

Consequently, they system modeling this situation is $\begin{gathered}h \\ 1.75 h+1.25 c=685\end{gathered}$

$$
1.75 h+1.25 c=685
$$

Example: A gardener has two kinds of solutions containing fertilizer and water. One is 5\% fertilizer and the other is 15% fertilizer. The gardener needs 50 liters of a 12% solution and needs to make it by mixing. What system of equations could be used to find out how much of each solution should be used?

Solution:

Let $\mathrm{x}=$ the number of liters of the solution containing 5\% fertilizer
Let $y=$ the number of liters of the solution containing 15% fertilizer
Since the gardener is going to mix these two fertilizer solutions into one solution that is a total of 50 liters, one of the equations representing the total amount of the solution is $\mathrm{x}+\mathrm{y}=50$.
The other equation needs to represent just the amount of fertilizer in the solutions. The amount of fertilizer that is in the 5% solution would be found by multiplying 5% and the number of liters for that solution. (The other 95% is some other liquid, most likely water.) We would change the percent to a decimal and multiply, so the amount of fertilizer in the 5% solution that would be mixed into the total fertilizer solution would be 0.05 x . Likewise, the amount of fertilizer in the 15% solution would be $0.15 y$ and the amount of fertilizer in the total package would be $0.12(50)$ or 6 liters of fertilizer out of the 50 liters total.

Therefore, the system that could be used to find x and y, the number of liters of the two solutions that the gardener needs to mix together is

$$
\begin{gathered}
x+y=50 \\
0.05 x+0.15 y=6
\end{gathered}
$$

