Follow the steps below to find the x－intercepts of a quadratic function using the graphing calculator

Find the x－intercept（s）for $y=x^{2}-5 x+3$ ．

Step 1：Enter quadratic equation into calculator for $\left[\mathbf{Y}_{1}\right]$ ．
Step 2：Enter 0 for $\left[\mathbf{Y}_{2}\right]$ ．
Step 3：Using left arrow［＜］，move cursor to line descriptor on the left of $\left[\mathbf{Y}_{2}\right]$ and press［ENTER］to bold this－line．

Step 4：［GRAPH］（Notice，$y=0$ is a bold line on the y－axis．）

Recall：The x－intercept is where parabola intersects the x－axis or where $y=0$ ．

Step 5：Since the x－intercept（s）（or zeros or roots）is where the graph intersects the x－axis， choose 5：intersect［ENTER］．

Step 6：Move the cursor or blinking light to one of the x－intercepts．
Step 7：Press［ENTER］［ENTER］
［ENTER］． ［ENTER］．

GHLEDLATE
1：vヨl늘
2：ェero
S：minimum
4：maximbm
里intersect
6：devax
7：$\sqrt{f}(x) d x$

One of the x－intecepts is $(0.7,0)$ ．
Step 8：Repeat steps 5 to 7 to get second x－ intercept．
（nz＝0

